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 Initiation Time (Ti)

 Time for appearance of 
cracking in the external 
concrete surface (Tc) since 
the Chloride Threshold 
Concentration (CT) is 
reached. 

 Time for development of 
spalls  (Ts)  and the 
Maintenance-Free Service 
Life (Tmf)  is reached
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Corrosion-induced deterioration of reinforced concrete 
can be modeled in three steps 

Image from NACE Conference, Vancouver, 2016

Background



Background
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1) Cathodic protection 

2) Electrochemical 

chloride extraction 

3) Corrosion inhibition 

mechanism with 

microcapsules to 

increase stage 1

Corrosion mitigation techniques in chloride-
contaminated concrete



Microcapsules have been the most widely utilized 

delivery method for the self-healing concept due to

Its versatility in fabrication 

The variety of applicable healing agents

The corrosion inhibitor selected is calcium nitrate 

Calcium nitrates microcapsules will rupture during a 

cracking event and thereby release the core 

material when needed
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Background



Corrosion Inhibition Mechanism
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Image adapted from White et al. 2001



Objectives
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Study the performance of microencapsulated calcium nitrate 
as a corrosion inhibitor

Evaluate the influence of microcapsule concentrations 
(0.25, 0.50, and 2.00% by wt. of cement)

Test for corrosion in continuous ponding and wet/dry 
cycles 

Performance evaluation based on short term experiments



MATERIALS AND METHODS
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Microcapsule Preparation

The process is based on 

a water-in-oil suspension 

polymerization reaction 

of polyurea-

formaldehyde 



Experimental Matrix
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 Microcapsules embedded at varying 

concentrations to determine the minimal dosage 

required to mitigate corrosion considerably 

Sample ID
Corrosion 

Inhibitor

Concentration 

(% by wt. of 

cement) 

Control N/A N/A

CN-0.25 Calcium Nitrate 0.25

CN-0.50 Calcium Nitrate 0.50

CN-2.00 Calcium Nitrate 2.00



Concrete Testing 
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Concrete cylinders (100 mm x 200 mm) were 

made for:

 Compressive strength (ASTM  C39)

 Surface resistivity tests (AASHTO TP 95) 
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Concrete beams were made for corrosion 

testing (ASTM G109)

Dimensions: 115 mm x 150 mm x 280 mm

Corrosion Characterization



Corrosion Characterization

 Interfacial characterization of corrosion-inhibiting 

agents by exposing the concrete specimens to 

continuous ponding and wet/dry cycles 

Open circuit potential measurements 

Electrochemical impedance spectroscopy was 

performed in the frequency range from 10k –

0.01 Hz with the amplitude of 10 mV. 
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Corrosion Characterization
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 Traditional three-electrode configuration was used for 

EIS testing, consisting of:

Working electrode (anodic rebar)

Saturated calomel electrode (SCE) as the reference electrode

Platinum mesh wire as the counter electrode



Corrosion Characterization
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 The polarization resistance (Rp) from EIS was used 
to calculate the instantaneous corrosion rate 

 For the continuous ponding, all the corrosion tests 
were performed every week for 85 days. 
In the first ten days, measurements were taken every 

2 days 

 In the wet/dry cycles, the ponding well was filled 
with a 3 wt.% NaCl solution 
Specimens were alternately exposed to 2-week 

periods with solution then 2 weeks without solution 

 The corrosion testing was conducted at the 
beginning of the second week of ponding.



RESULTS AND ANALYSIS



Results
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Concrete Testing

An increase in microcapsule concentration has a 
negative impact on strength

 The highest microcapsule concentration (2% by 
wt. of cement) resulted in an 18% strength 
reduction

Resistivity tests showed that the addition of 
microcapsules dropped the chloride permeability 
level from ‘Low’ to ‘Moderate’



Compressive Strength
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Surface Resistivity
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Sample ID

Concentration 

(% by wt. of 

cement) 

Surface 

Resistivity

(kΩ-cm)

Chloride 

Penetrability

Control N/A 21.9 Low

CN-0.25 0.25 20.1 Moderate

CN-0.50 0.50 18.7 Moderate

CN-2.00 2.00 15.3 Moderate



Open circuit potential  

Continuous Ponding
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Open circuit potential 

Wet/Dry Cycles
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Macrocell corrosion current  

Continuous Ponding
21



Macrocell corrosion current 

Wet/dry cycle 
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Conclusions

The concentration of microcapsules added had 

a significant effect on the compressive strength 

of concrete

Surface resistivity tests indicated that a slight 

increase in chloride penetrability was 

attributed to the addition of microcapsules. 
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Conclusions

The exposure of the concrete specimens 

(continuous ponding vs. wet/dry cycles) had a 

significant influence on the results

For the continuous ponding, there was a 

passivation-activation-repassivation process. 

The highest magnitude of activation was found 

in the sample that had the highest microcapsule 

concentrations (2%). 
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Conclusions
25

For the wet/dry cycles, the sample with the 

smallest microcapsule concentration has the 

most active corrosion

The best performance is achieved at the highest 

microcapsule concentration (2%).

New testing is ongoing for short-term results 

and interfacial characterization



QUESTIONS?

Thank you!
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Outline
1. Introduction

2. Literature Review

3. Problem Statement

4. Research Objectives and Scope

5. Research Methodology

6. Results and Discussion

7. Project Status
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Introduction
Definition of Self-Consolidating Concrete (SCC)
Compared to Conventional Vibratory Concrete (CVC)

Specific mix proportioning as well as using admixtures:
- viscosity modifying admixture (VMA), 
- high range water-reducing (HRWR), 
- super-plasticizers (SP)

High workability, flowability, passing ability and forming around reinforcement, smooth finished 
surface

CVC

SCC
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Literature
• Distribution of the Water/Cement ratio and 28-day compressive strength for SCC mixes 

across the literature

• Distribution of slump flow of SCC across the literature
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Scope of Work
 Phase I

 Documentation and Information 
Search

 Phase II
 Experimental Investigations

 Fresh Concrete Properties
• Workability
• Rheology
• Air Content

 Early-Age Concrete Properties
• Time of Setting
• Heat of Hydration

 Hardened Concrete Properties
• Mechanical

 Compressive/Tensile 
Strength 

 Modulus of Elasticity
• Visco-Elastic

 Drying Shrinkage
 Data Analysis, Simulation and 

Model Development
 Draft Final Report

 Sustainable Infrastructure 

Materials (Extending the Life)

 Avoiding Micro-Cracks 

(Extending the Life)

 Improved Load Bearing 

Capacity and Durability

 Improved Workability
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Fibers
Steel MacroFibers

Synthetic MacroFibers

Synthetic MicroFibers

Recycled Tire Fibers
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Laboratory Evaluations
• Estimating fresh properties of fiber-reinforced SCC

• Filling ability: Slump flow (ASTM C1611)

• Passing ability: J-Ring (ASTM C1621)

• Static Segregation resistance: Column 
Segregation Test (ASTM 1610)

• Air Content of Freshly Mixed Concrete by 
the Pressure Method (ASTM C173)

• Drying and Plastic Shrinkage

• Estimating Hardened Properties

• Compressive Strength (ASTM C39)

• Split Tensile Strength (ASTM C496)

• Modulus of Elasticity (ASTM C469)

• Flexural Beam Strength (ASTM C1609)
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Fresh Properties – Static Stability 
(ASTM C1712)

Higher Static Penetration = Higher Segregation
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Fresh Properties – Visual Stability Index, 
VSI (AASHTO T351)

Stable SCC Mix Bleeding Segregation
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Maturity Index
• Estimating maturity of SCC specimens and predicting strength based 

on curing temperature and maturity index

Temperature Sensors

Microcontroller
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Preliminary Results – Compressive Strength
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Simulating the Response of Fiber-Reinforced 
SCC

Cusatis et al. 2015

Cusatis et al. 2015



1515California State University Los Angeles

Summary
• Work is in progress in Phase II

• Design of fiber-reinforced SCC mix proportioning

• Selection of recycled fiber types and non-cementitious materials

• Preparing laboratory samples

• Fresh properties

• Passing ability, filling ability, segregation, slump flow

• Hardened properties

• Compressive strength, split tensile strength, modulus of 
elasticity, drying shrinkage

• Maturity

• Developing analytical models

• LDPM simulations
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New ACI Certificate
ACI Self-consolidating Concrete Testing Technician Certification

ACI, 2018

• ASTM C1610: Standard Test 
Method for Static Segregation of 
SCC Using Column Technique

• ASTM C1611: Standard Test 
Method for Slump Flow of SCC

• ASTM C 1621: Standard Test 
Method for Passing Ability of SCC 
by J-Ring

• ASTM C1712: Standard Test 
Method for Rapid Assessment of 
Static Segregation Resistance of 
SCC Using Penetration Test  

• ASTM C1758: Standard Test 
Method for Fabrication of a Test 
Specimen with SCC



17

Thank You
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Outline

2

• ECC

• VDOT Applications

– Shear keys

– Closure pours

– Culvert repairs



ECC (engineered cementitious composite)

• ECC is a mortar mixture with PVA (polyvinyl 

alcohol) fibers.  

• ECC was developed by Dr. Victor Li from the 
University of Michigan.

3



Typical ECC Mixture (lb/yd3)

4

Portland cement (Type I/II) 961

Class F fly ash 1153

Water 571

Mortar or concrete sand 676

Fibers (PVA)
40-44

(1.8 to 2%)

Max w/cm 0.27

Contains HRWRA; other admixtures such as workability 

retaining, shrinkage reducing, retarding, accelerating, viscosity 

modifying can be added.



ECC
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Flexure Test - ECC with 2% (44 lb/yd3) PVA fibers 

deflection hardens; stronger after the first crack



7

Deflection

Tight cracks 
(<0.1 mm)

ECC



Shear Keys
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Transfer the load between beams and seal joints



Route 645 Bridge: Shear Keys, 2013
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Mixing
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Self- consolidating ECC with high workability is used in 
Shear Keys
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Slump flow ranges from 18 to 21 inches 



Route 645: Shear Keys
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ECC UHPC

Grout (control)



Route 645: ECC

• Self consolidating

• Easy to place with 
wooden trough

• Held shape 
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Route 645 - Shear Keys

ECC with PVA fibersUHPC

Non-shrink grout

After 3 months, only ECC did not leak
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Route 630: Shear Keys, 2014
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Route 630: Shear Keys

Easy placement of ECC. No consolidation.



Closure Pour (Link Slab), 2014
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• Eliminate joints

• Place closure pour



Closure Pours: I-64 over Dunlap Creek
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Joint Closure 
Pour

Dimensions:
• 16 feet long

• 4 feet wide
• 8-10 inches 

deep

• 2-3 yd3
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Fibers added 
manually 

without the 
bags

ECC in RMC Trucks
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ECC in Closure Pours
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ECC - Shrinkage

Batch 3A and 3B

Batches 1 and 2
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Crack Survey
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Crack Survey
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Culvert Repair

25

Corrugated metal pipe (CMP) culverts made of 

galvanized steel are subject to abrasion and 
corrosion mainly in the inverts. 



Geogrid and Spacers
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First Application, 2017
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6-ft section of a 70-ft long culvert



High Workability  (slump flow) 
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Manual Placement
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Wet mix flowing down on the sides



Completed



Remaining Section Paved by Spraying
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Trailer Pump 
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Wet Mix



Completed 
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Stiff ECC mixture
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Stiff mix

36



Vibrator

37



Route 774

38



Completed
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Conclusions

• ECC can be prepared with locally available 
materials including mortar or concrete sand.

• ECC deflection hardens and exhibits tight 

cracks. 

• Mortar mixer and RMC trucks both can be 

used for mixing ECC.

• ECC is self-consolidating (for shear keys, and 
closure pours).

• Stiff ECC is easily sprayed with a trailer pump.
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Thank you.

Questions?

41
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