

Novel Concrete Materials to Enhance Durability of Transportation Infrastructure

JOINT TRAN-SET WEBINAR SERIES

Self-Healing Microcapsules as Concrete Aggregates for Corrosion Inhibition in Reinforced Concrete

Dr. Homero Castaneda Texas A&M University

CHARACTERIZING AND UNDERSTANDING SELF-HEALING MICROCAPSULES EMBEDDED IN REINFORCED CONCRETE STRUCTURES EXPOSED TO CORROSIVE ENVIRONMENTS

Reece Goldsberry Jose Milla Melvin McElwee Ahmad Ivan Karayan Marwa Hassan Homero Castaneda

Background

Corrosion-induced deterioration of reinforced concrete can be modeled in three steps

 \Box Initiation Time (T_i)

- Time for appearance of cracking in the external concrete surface (Tc) since the Chloride Threshold Concentration (C_T) is reached.
- Time for development of spalls (T_s) and the Maintenance-Free Service Life (T_{mf}) is reached

Background

Corrosion mitigation techniques in chloridecontaminated concrete

- 1) Cathodic protection
- 2) Electrochemical chloride extraction
- 3) Corrosion inhibition mechanism with microcapsules to increase stage 1

Background

- 4
- Microcapsules have been the most widely utilized delivery method for the self-healing concept due to
 Its versatility in fabrication
 The variety of applicable healing agents
- The corrosion inhibitor selected is calcium nitrate
- Calcium nitrates microcapsules will rupture during a cracking event and thereby release the core material when needed

Corrosion Inhibition Mechanism

Image adapted from White et al. 2001

Objectives

MATERIALS AND METHODS

Microcapsule Preparation

The process is based on a water-in-oil suspension polymerization reaction of polyureaformaldehyde

Experimental Matrix

Microcapsules embedded at varying concentrations to determine the minimal dosage required to mitigate corrosion considerably

Sample ID	Corrosion Inhibitor	Concentration (% by wt. of cement)
Control	N/A	N/A
CN-0.25	Calcium Nitrate	0.25
CN-0.50	Calcium Nitrate	0.50
CN-2.00	Calcium Nitrate	2.00

Concrete Testing

- Concrete cylinders (100 mm x 200 mm) were made for:
 - Compressive strength (ASTM C39)
 - Surface resistivity tests (AASHTO TP 95)

Concrete beams were made for corrosion testing (ASTM G109)

Dimensions: 115 mm x 150 mm x 280 mm

- 12
- Interfacial characterization of corrosion-inhibiting agents by exposing the concrete specimens to continuous ponding and wet/dry cycles
- Open circuit potential measurements
- Electrochemical impedance spectroscopy was performed in the frequency range from 10k – 0.01 Hz with the amplitude of 10 mV.

13

Traditional three-electrode configuration was used for EIS testing, consisting of:

- Working electrode (anodic rebar)
- Saturated calomel electrode (SCE) as the reference electrode

Platinum mesh wire as the counter electrode

- The polarization resistance (Rp) from EIS was used to calculate the instantaneous corrosion rate
- For the continuous ponding, all the corrosion tests were performed every week for 85 days.
 - In the first ten days, measurements were taken every 2 days
- In the wet/dry cycles, the ponding well was filled with a 3 wt.% NaCl solution
 - Specimens were alternately exposed to 2-week periods with solution then 2 weeks without solution
- The corrosion testing was conducted at the beginning of the second week of ponding.

RESULTS AND ANALYSIS

Results

Concrete Testing

- An increase in microcapsule concentration has a negative impact on strength
- The highest microcapsule concentration (2% by wt. of cement) resulted in an 18% strength reduction
- Resistivity tests showed that the addition of microcapsules dropped the chloride permeability level from 'Low' to 'Moderate'

Compressive Strength

Surface Resistivity

Sample ID	Concentration (% by wt. of cement)	Surface Resistivity (kΩ-cm)	Chloride Penetrability
Control	N/A	21.9	Low
CN-0.25	0.25	20.1	Moderate
CN-0.50	0.50	18.7	Moderate
CN-2.00	2.00	15.3	Moderate

Open circuit potential Continuous Ponding

Days of exposure

Open circuit potential Wet/Dry Cycles

20

Week of wet/dry cycle

Macrocell corrosion current Continuous Ponding

Macrocell corrosion current Wet/dry cycle

22

Conclusions

23

- The concentration of microcapsules added had a significant effect on the compressive strength of concrete
- Surface resistivity tests indicated that a slight increase in chloride penetrability was attributed to the addition of microcapsules.

Conclusions

- The exposure of the concrete specimens (continuous ponding vs. wet/dry cycles) had a significant influence on the results
- ■For the continuous ponding, there was a passivation-activation-repassivation process.
- The highest magnitude of activation was found in the sample that had the highest microcapsule concentrations (2%).

Conclusions

- For the wet/dry cycles, the sample with the smallest microcapsule concentration has the most active corrosion
- The best performance is achieved at the highest microcapsule concentration (2%).
- New testing is ongoing for short-term results and interfacial characterization

QUESTIONS?

Thank you!

JOINT TRAN-SET WEBINAR SERIES

Evaluating the Use of Recycled and Sustainable Materials in Self-Consolidating Concrete for Underground Infrastructure Applications

Dr. Mehran Mazari California State University - LA

Evaluating the Use of Recycled and Sustainable Materials in Self-Consolidating Concrete for Underground Infrastructure Applications

Mehran Mazari, Ph.D. Assistant Professor, Department of Civil Engineering

California State University Los Angeles Los Angeles, CA July 11, 2018

Acknowledgment

UTC-UTI Director:

Marte Gutierrez Colorado School of Mines

Project Staff:

Mehran Mazari (PI) Tona Rodriguez (Co-PI)

Research Assistants:

Hector Cruz Jason NG Francisco Ojeda Daniel Marquez

Outline

- 1. Introduction
- 2. Literature Review
- 3. Problem Statement
- 4. Research Objectives and Scope
- 5. Research Methodology
- 6. Results and Discussion
- 7. Project Status

Introduction

Definition of Self-Consolidating Concrete (SCC)

Compared to Conventional Vibratory Concrete (CVC)

High workability, flowability, passing ability and forming around reinforcement, smooth finished surface

Specific mix proportioning as well as using admixtures:

- viscosity modifying admixture (VMA),
- high range water-reducing (HRWR),
- super-plasticizers (SP)

Traditional Concrete CVC

Richard-Hulin et al. 2011

SCC

Self-Compacting Concrete

Literature

• Distribution of the Water/Cement ratio and 28-day compressive strength for SCC mixes across the literature

• Distribution of slump flow of SCC across the literature

Scope of Work

- Phase I
 - Documentation and Information Search
- Phase II

Experimental Investigations

- Fresh Concrete Properties
 - Workability
 - Rheology
 - Air Content
- Early-Age Concrete Properties
 - Time of Setting
 - Heat of Hydration
- Hardened Concrete Properties
 - Mechanical
 - ✓ Compressive/Tensile Strength
 - Modulus of Elasticity
 - Visco-Elastic
 - Drying Shrinkage
- Data Analysis, Simulation and Model Development
- Draft Final Report

Improved Load Bearing Capacity and <u>Durability</u>

(Extending the Life)

Avoiding Micro-Cracks

Sustainable Infrastructure

Materials (Extending the Life)

Improved Workability

Steel MacroFibers

Synthetic MacroFibers

Synthetic MicroFibers

Recycled Tire Fibers

UNIVERSITYTRANSPORTATIONCENTER
Laboratory Evaluations

- Estimating fresh properties of fiber-reinforced SCC
 - Filling ability: Slump flow (ASTM C1611)
 - **Passing ability: J-Ring** (ASTM C1621)
 - Static Segregation resistance: Column
 Segregation Test (ASTM 1610)
 - Air Content of Freshly Mixed Concrete by the Pressure Method (ASTM C173)
- Drying and Plastic Shrinkage
- Estimating Hardened Properties
 - Compressive Strength (ASTM C39)
 - Split Tensile Strength (ASTM C496)
 - Modulus of Elasticity (ASTM C469)
 - Flexural Beam Strength (ASTM C1609)

Fresh Properties – Passing Ability by **J-Ring** (AASHTO T345, ASTM C1621)

Slump Test

Fresh Properties – Static Stability (ASTM C1712)

Higher Static Penetration = Higher Segregation

Degree of Static Segregation Resistance

UNIVERSITYTRANSPORTATIONCENTER

Fresh Properties – Visual Stability Index, VSI (AASHTO T351)

Stable SCC Mix

Bleeding

Segregation

Maturity Index

 Estimating maturity of SCC specimens and predicting strength based on curing temperature and maturity index

$$M = \sum_{0}^{t} (T - T_{o}) \cdot \Delta t$$

Preliminary Results – Compressive Strength

Simulating the Response of Fiber-Reinforced SCC

LA

OUNIVERSITYTRANSPORTATIONCENTER

Summary

- Work is in progress in Phase II
 - Design of fiber-reinforced SCC mix proportioning
 - Selection of recycled fiber types and non-cementitious materials
 - Preparing laboratory samples
 - Fresh properties
 - Passing ability, filling ability, segregation, slump flow
 - Hardened properties
 - Compressive strength, split tensile strength, modulus of elasticity, drying shrinkage
 - Maturity
 - Developing analytical models
 - LDPM simulations

New ACI Certificate

ACI Self-consolidating Concrete Testing Technician Certification

- ASTM C1610: Standard Test Method for Static Segregation of SCC Using Column Technique
- ASTM C1611: Standard Test Method for Slump Flow of SCC
- ASTM C 1621: Standard Test Method for Passing Ability of SCC by J-Ring
- ASTM C1712: Standard Test Method for Rapid Assessment of Static Segregation Resistance of SCC Using Penetration Test
- ASTM C1758: Standard Test Method for Fabrication of a Test Specimen with SCC

ACI, 2018

Thank You

Use of ECC in Shear Keys, Closure Pours, and Culvert Repairs

We bring innovation to transportation.

USE OF ECC IN SHEAR KEYS, CLOSURE POURS, AND CULVERT REPAIRS

H. Celik Ozyildirim, Ph.D., P.E.

Outline

- ECC
- VDOT Applications
 - Shear keys
 - Closure pours
 - Culvert repairs

ECC (engineered cementitious composite)

- ECC is a mortar mixture with PVA (polyvinyl alcohol) fibers.
- ECC was developed by Dr. Victor Li from the University of Michigan.

Typical ECC Mixture (lb/yd³)

Portland cement (Type I/II)	961
Class F fly ash	1153
Water	571
Mortar or concrete sand	676
Fibers (PVA)	40-44 (1.8 to 2%)
Max w/cm	0.27

Contains HRWRA; other admixtures such as workability retaining, shrinkage reducing, retarding, accelerating, viscosity modifying can be added.

ECC

Flexure Test - ECC with 2% (44 lb/yd³) PVA fibers deflection hardens; stronger after the first crack

Deflection

Tight cracks (<0.1 mm)

Shear Keys

Transfer the load between beams and seal joints

Route 645 Bridge: Shear Keys, 2013

Mixing

Self- consolidating ECC with high workability is used in Shear Keys

Slump flow ranges from 18 to 21 inches

Route 645: Shear Keys

Route 645: ECC

- Self consolidating
- Easy to place with wooden trough
- Held shape

Route 645 - Shear Keys

Route 630: Shear Keys, 2014

Route 630: Shear Keys

Easy placement of ECC. No consolidation.

Closure Pour (Link Slab), 2014

- Eliminate joints
- Place closure pour

Closure Pours: I-64 over Dunlap Creek

Joint Closure Pour

Dimensions:

- 16 feet long
- 4 feet wide
- 8-10 inches deep
- 2-3 yd³

ECC in RMC Trucks

Fibers added manually without the bags

ECC in Closure Pours

Crack Survey

Crack Survey

Culvert Repair

Corrugated metal pipe (CMP) culverts made of galvanized steel are subject to abrasion and corrosion mainly in the inverts.

Geogrid and Spacers

First Application, 2017 6-ft section of a 70-ft long culvert

High Workability (slump flow)

Manual Placement

Wet mix flowing down on the sides

Completed

Remaining Section Paved by Spraying

Trailer Pump

Wet Mix

Completed

Stiff ECC mixture

Stiff mix

Vibrator

Route 774

Completed

Conclusions

- ECC can be prepared with locally available materials including mortar or concrete sand.
- ECC deflection hardens and exhibits tight cracks.
- Mortar mixer and RMC trucks both can be used for mixing ECC.
- ECC is self-consolidating (for shear keys, and closure pours).
- Stiff ECC is easily sprayed with a trailer pump.

We bring innovation to transportation.

Thank you.

Questions?

